技術支持 Support
    無分類
搜索 Search
你的位置:首頁 > 技術支持

散熱器 生產 報價 品牌 廠家 材料 知識 百科 深圳

2014-5-12 10:09:51點擊:

散熱器 生產 報價 品牌 廠家 材料  知識 百科 深圳

散熱器百度百科
  在我們的日常生活中散熱器的種類是很豐富的。有筆記本散熱器、汽車散熱器等等。
材質對傳導

CPU的Die通常不到2平方厘米,但功耗卻達到幾十、上百瓦,如果不能及時將熱量傳導出去,熱量一旦在Die中積聚,將會導致嚴重的后果。
散熱器來說,最重要的是其底座能夠在短時間內能盡可能多的吸收CPU釋放的熱量,即瞬間吸熱能力,這只有具備高熱傳導系數的金屬才能勝任。對于金屬導熱材料而言,比熱和熱傳導系數是兩個重要的參數。
熱傳導系數的定義為:每單位長度、每K,可以傳送多少W的能量,單位為W/mK。其中“W”指熱功率單位,“m”代表長度單位米,而“K”為絕對溫度單位。該數值越大說明導熱性能越好。以下是幾種常見金屬的熱傳導系數表:
熱傳導系數 (單位: W/mK)
銀 429 銅 401
金 317 鋁 237
鐵 80 鉛 34.8
1070型鋁合金 226 1050型鋁合金 209
6063型鋁合金 201 6061型鋁合金 155
由此可以看出,銀和銅是最好的導熱材料,其次是金和鋁。但是金、銀太過昂貴,所以,現在散熱片主要由鋁和銅制成。但由于銅密度大,工藝復雜,價格較貴,所以現在通常的風扇多采用較輕的鋁制成,當然,對風冷散熱器來說,在考慮材質的時候除了熱傳導系數外,還必須考慮散熱器的熱容量,綜合這兩項參數,鋁的優越性就體現出來。不過,本文只討論熱傳導方面,對那些我們將在下一部分詳細討論。
要提高散熱器底座的熱傳導能力,選用具有較高的熱傳導系數的材質是一方面,但另一方面也要解決好熱源如CPU與散熱器底座的結合的緊密程度問題。根據熱傳導的定律,在材質固定的前提下,傳導能力與接觸面積成正比,與接觸距離成反比。接觸面積越大,就能使熱量越快地散發出去,但對CPU來說其Die是固定的,所以結合距離就更顯重要。
盡管從理論上講,散熱片底座是能和CPU緊密接觸的,但客觀說來,無論兩個接觸面有多么平滑,它們之間還是有空隙的,即存在空氣,而空氣的導熱性能很差,這就需要設計優異、抓緊力強大的扣具來將散熱片緊密地扣在CPU上,另外,需要用一些導熱性能更好而且能變形的東西代替空氣來填補這些空隙,如導熱硅脂或者散熱膠帶。理想的情況就是扣具將散熱片緊緊固定在CPU上,散熱片和CPU的接觸完全平行以保持接觸面積最大,它們之間一些微小的空隙完全由硅脂填充以保持接觸熱阻最小。
但是,必須要明確一點,無論哪種導熱硅脂或散熱膠帶,其作用只能是輔助性的,與銅質的散熱底座材質相比,其熱阻大了很多倍。要實現散熱器底座的熱傳導能力最大化,還要首先必須保證散熱器底座的光滑與平整,這樣才能真正減小散熱器與CPU接觸面之間的空隙。
散熱器底面處理工藝/飛海化工鈍化
常用的底面處理工藝包括:
拉絲工藝(研磨)
拉絲工藝也是使用最多的底面處理工藝。拉絲時使用某種表面具有一定粗糙程度及硬度的工具,常見的如砂紙、銼等,對物體處理表面進行單向、反復或旋轉的摩擦,借助工具粗糙表面摩擦時的剪削效果去除處理表面的凸出物;當然,磨平凸出物的同時也會在原本平整的表面上造成劃痕。故而應采用由粗到細循序漸進的過程,逐漸減小處理表面的粗糙程度。
拉絲工藝的特征 : 一條條平行的磨痕
盤銑工藝(切削)
盤銑工藝是指將散熱器底面固定之后通過高速旋轉的刀具切割散熱器表面,刀具始終在同一平面內旋轉,因此切割出來的底面非常平整。與拉絲工藝相同,盤銑工藝使用的刀具越精細,切割出的底面的平整程度越高。盤銑工藝的制造成本較高,但相對拉絲只需要兩三道工序,比較省時,并且效果也比較理想。
盤銑工藝特征 : 弧形的磨痕
數控機床
數控機床應用于散熱片的底面平整處理主要采用的工藝仍然是銑。但與傳統盤銑不同,數控銑床的刀具可以通過單片機精確控制與散熱片間的相對距離。刀具接觸散熱片底面后,兩者水平方向相對運動,即可對傳統盤銑中刀具空隙留下的未處理部分進行切削,而達到完整的平面效果,不許任何后續處理即可獲得鏡面一般的效果,平整度可小于0.001mm。
其他工藝
除上述幾種外,還有其他對散熱器底處理的工藝,如拋光,《飛海化工鈍化》拋光處理更多地是出于散熱器美觀方面的考慮,對散熱器底面平整度改善,質量性能更好。
正如我們在前面所說,散熱器底面無論怎么處理,這種機械工藝不可能做出完全標準的平整面,在CPU與散熱器之間存在的溝壑或空隙總是不可避免的。存在于這些空隙中的空氣對散熱器的傳導能力有著很大的影響,人所共知,空氣的熱阻值很高,因此必須用其他物質來降低熱阻,否則散熱器的傳導性能會大打折扣,甚至無法發揮作用。這便是導熱介質的由來。它的作用就是填充熱源如CPU與散熱器之間大大小小的空隙,增大發熱源與散熱片的接觸面積。
3性能參數


由于導熱硅脂屬于一種化學物質,因此它也有反映自身工作特性的相關性能參數。只要了解這些參數的含義,就可以判斷一款導熱硅脂產品的性能高低。
工作溫度
工作溫度是確保導熱硅脂處于固態或液態的一個重要參數,溫度過高,導熱硅脂會因黏稠度降低而變成液態;溫度過低,它又會因黏稠度增加變成固態,這兩種情況都不利于散熱。導熱硅脂的工作溫度一般在-50℃~180℃。對于導熱硅脂的工作溫度,一般不用擔心,畢竟通過常規手段很難將CPU的溫度超出這個范圍,除非您打算用液氮制冷——那個溫度下大部分導熱硅脂才會失去作用。
熱傳導系數
與常用的散熱器材質相比,導熱硅脂的熱傳導系統要小很多,目前一般規范中,對導熱硅脂的熱傳導系數要求為1.13W/mK,與銅的401W/mk相比,差距不可同日而語,但與空氣相比,仍高了許多。由此也可見,散熱器底面是否平滑是多么重要,某些廠商宣稱其底面不夠平整的散熱器只需靠導熱硅脂填充而不影響其散熱能力的說法多么無恥。
熱阻系數
熱阻系數表示物體對熱量傳導的阻礙效果。熱阻的概念與電阻非常類似,單位也與之相仿(℃/W),即物體持續傳熱功率為1W時,導熱路徑兩端的溫差。熱阻顯然是越低越好,因為相同的環境溫度與導熱功率下,熱阻越低,發熱物體的溫度就越低。熱阻的大小與導熱硅脂所采用的材料有很大的關系。
介電常數
對于部分沒有金屬頂蓋保護的CPU而言,介電常數是個非常重要的參數,這關系到計算機內部是否存在短路的問題。普通導熱硅脂所采用的都是絕緣性較好的材料,但是部分特殊硅脂(如含銀硅脂等)則可能有一定的導電性。當然,目前的CPU都加裝了用于導熱和保護核心的金屬頂蓋,因此不必擔心導熱硅脂溢出而帶來的短路問題,但在涂抹時也必須注意不要將導熱硅脂誤涂到其他地方如主板上。
主流散熱器所用導熱硅脂的介電常數都大于5.1。
黏度
黏度即指導熱硅脂的黏稠度。一般來說,導熱硅脂的黏度在68左右。
使用導熱硅脂的注意事項
導熱硅脂涂抹時最重要的是均勻,能夠覆蓋CPU核心就可以,完全沒必要涂抹太多甚至厚厚一層,那樣反而會影響散熱器的性能,要清楚所謂的導熱硅脂的熱傳導系數高只是相比于空氣而言,與散熱器材質如銅甚至鋁相比,要低得多。
此外,大多數普通導熱硅脂在使用一年或更長時間后,會出現“干化”或“硬化”現象,大大影響散熱效果。因此,要保證系統長期穩定地工作,定期清理并重新涂抹硅脂也是必要的。
4選配適合

尤其夏季長時間使用電腦,常使電腦“發高燒”。作為電腦降溫“良藥”的散熱器越來越受到消費者的歡迎。不少商家表示,電腦散熱器隨著天氣的愈加炎熱,已進入熱銷時期。
大部分購買電腦散熱器的消費者都是筆記本電腦的使用者。有的人使用筆記本電腦主要用來炒股,經常從早上一直開到下午3點多,用手一摸滾燙,所以想到買個散熱器給電腦降降溫。2007年,各品牌筆記本電腦的散熱器價格從40—200元不等。業內人士表示,對于筆記本電腦的使用者來說,要盡量使用高檔的散熱器
據介紹,有些買電腦散熱器的消費者都想買功率大的產品,他們認為散熱器的風扇功率越大,風力就越強勁,散熱效果也越好。其實只要能夠保證電腦的CPU在安全溫度以下就可以了,不必過分強調風扇功率的大小,用功率過大的風扇會對電源產生額外的負擔,有可能產生一些隱性故障。
5注意事項

看形狀 鰭形散熱器通過薄薄的鋁板折彎而成,看起來就像手風琴的風箱;渦流散熱器每個散熱葉片都向一個方向傾斜,有助于空氣流通。這兩種產品的散熱效能比較強。
看材質 鋁擠壓型材的散熱器價格最低,但散熱效果不好;金、銀、銅材質的散熱器散熱效果不錯,但造價高,重量大。性價比最高的是鋁合金材質的散熱器
看面積 散熱器是通過對流的形式將熱散發掉,表面積越大,散熱效果越好。在選擇散熱器時,也應該對散熱器的散熱面積給予關注。
其它:選擇鋁制品散熱器時,還要注意散熱器的底部不能太厚,因為鋁的導熱性不太好,太厚了會影響熱量的傳遞;另外,散熱器表面的導流槽應密一些,這樣可以確保散熱器能與空氣有較大的接觸面積,從而增強散熱效果。不建議購買靜音被動筆記本電腦散熱器,因為筆記本電腦底部墊腳設計與散熱器的接觸面積極小,很難從機身將熱量傳導到散熱器上。
散熱器360百科
散熱器
有些設備工作時會產生大量的熱量,而這些多余的熱量不能有快速散去并聚積起來產生高溫,很可能會毀壞正在工作的設備,這時散熱器便能有效地解決這個問題。散熱器是附在發熱設備上的一層良好導熱介質,扮演猶如中間人一樣的角色,有時在導熱介質的基礎上還會加上風扇等等東西來加快散熱效果。但有時散熱器也扮演強盜的角色,如冰箱的散熱器是強制抽走熱量,來達到比室溫更低的溫度。
基本簡介
  散熱器是一種加快發熱體熱量散發的裝置,衡量一個散熱器的好壞有兩點:散熱和靜音。計算機部件中大量使用集成電路。眾所周知,高溫是集成電路的大敵。高溫不但會導致系統運行不穩,使用壽命縮短,甚至有可能使某些部件燒毀。導致高溫的熱量不是來自計算機外,而是計算機內部,或者說是集成電路內部。散熱器的作用就是將這些熱量吸收,然后發散到機箱內或者機箱外,保證計算機部件的溫度正常。多數散熱器通過和發熱部件表面接觸,吸收熱量,再通過各種方法將熱量傳遞到遠處,比如機箱內的空氣中,然后機箱將這些熱空氣傳到機箱外,完成計算機的散熱。
1 工作原理
  散熱器主要靠對流,如果對流被破壞,熱效率會被大大降低。傳統的家居裝飾往往是包暖氣罩,而根本不考慮最基本的物理原理——熱對流,是取暖設備的正常供暖遭到破壞。熱空氣輕,冷空氣重,因此,空調裝在高處,目的是讓冷氣從頭而降,散熱器裝在低處,易于熱氣上升。加強對流才能迅速提高熱量,取暖費就不白交。
  含油軸承是使用滑動摩擦的套筒軸承,使用潤滑油作為潤滑劑和減阻劑,初期使用時運行噪音低,制造成本也低,但是這種軸承磨損嚴重,壽命較滾珠軸承有很大差距。而且這種軸承使用時間一長,由于油封的原因(電腦散熱器產品都不可能使用高檔油封,一般也就是普通的紙油封),潤滑油會逐漸揮發,而且灰塵也會進入軸承,從而引起風扇轉速變慢,噪音增大等問題,嚴重的還會因為軸承磨損造成風扇偏心引發劇烈震動。散熱器
  散熱器不敵灰塵來襲,由于風流原因,散熱器鰭片產生的風壓并非垂直下壓,而是呈環形擴散,這就好比自家房頂的吊扇,風扇正下方的風流往往沒有吊扇外圍強一樣,而空氣中自帶的灰塵就會隨著風速在外圍環流,附著在風扇四周的散熱鰭片上,導致風流不通,同時由于鰭片堵塞而產生的回風又會卷入大量塵埃進入風扇葉片,降低散熱器使用壽命;空氣中的水蒸汽附著風扇葉片,導致塵埃粘附在風扇扇葉,增加葉片重量,降低轉速;散熱器軸承高速旋轉,隨著使用時間的推移,有油性物質溢出軸承,粘著散熱器,積累更多灰塵。
  散熱器風扇轉速由電機內線圈的匝數、工作電壓、風扇扇頁的數量、傾角、高度、直徑和軸承系統共同決定。在風扇結構固定的情況下,直流風扇(即使用直流電的風扇)的轉速隨工作電壓的變化而同步變化。風扇的轉速可以通過內部的轉速信號進行測量,也可以通過外部進行測量(外部測量是用其他儀器看風扇轉的有多快,內部測量則直接可以到BIOS里看,也可以通過軟件看。內部測量相對來說誤差大一些。要使散熱器熱效率提高,最科學的辦法是安裝在窗戶下或窗戶側面,這樣可以有效的阻止冷氣的進入且將從窗戶方向進入的冷空氣迅速的加熱。如果安裝在其他位置要考慮增加10-20%的熱量,即加大散熱器用量。
2 基本構成
2.1 機械軸承
  軸承形式是指散熱器風扇所使用的軸承類形。在機械工程上,軸承的類形非常多,但在散熱器產品上使用的軸承形式按照其基本工作原理分類也就那么三種:使用滑動摩擦的套筒軸承(Sleeve Bearing)和使用滾動摩擦的滾珠軸承(Ball Bearing)以及兩種軸承形式混合這三種。各大散熱器廠商在軸承方面推出的新技術,諸如磁浮軸承、流體保護系統軸承、液壓軸承、來福軸承、納米陶瓷軸承等也都是對上面這些基本的軸承形式加以改進而成,基本工作原理還是沒有變化。
2.2 散熱片
  散熱片是一種散熱器中的易發熱電子元件散熱的裝置,多由鋁合金,黃銅或青銅做成板狀,片狀,多片狀等,如電腦中CPU[中央處理器]要使用相當大的散熱片,電視機中電源管,行管,功放器中的功放管都要使用散熱片。一般散熱片在使用中要在電子元件與散熱片接觸面涂上一層導熱硅脂,使元器件發出的熱量更有效的傳導到散熱片上,在經散熱片散發到周圍空氣中去。
2.3 散熱風扇
  散熱風扇轉速由電機內線圈的匝數、工作電壓、風扇扇頁的數量、傾角、高度、直徑和軸承系統共同決定。在風扇結構固定的情況下,直流風扇(即使用直流電的風扇)的轉速隨工作電壓的變化而同步變化。風扇的轉速可以通過內部的轉速信號進行測量,也可以通過外部進行測量(外部測量是用其他儀器看風扇轉的有多快,內部測量則直接可以到BIOS里看,也可以通過軟件看。內部測量相對來說誤差大一些)。風扇轉速與散熱能力并沒有必然的關系,更高的風扇轉速反而會帶來更高的噪聲,選購散熱器產品時如果風量差不多,可以選擇轉速低的風扇,在使用時會安靜一些。
2.4 扣具
  扣具是散熱器的點睛之筆,沒有好的扣具,再好的散熱器也無用武之地。可以使散熱片與物體均勻緊密地接觸,從而降低接觸面間的熱阻抗,加強散熱片底部的吸熱能力。扣具的設計除保證使散熱器底部與處理器均勻受力外,壓緊應力的大小也必須適當。底部厚度不同的散熱器,即使用同一扣具,壓力也會發生變化。壓力太小會產生空隙,嚴重者會松脫;太大會壓壞處理器,因此扣具的壓力必須控制在一定范圍內。
3 基本種類
3.1 水冷散熱器
  水冷散熱器水冷系統一般由以下幾部分構成:熱交換器、循環系統、水箱、水泵和水,根據需要還可以增加散熱結構。而水因為其物理屬性,導熱性并不比金屬好(風扇制冷通過金屬導熱),但是,流動的水就會有極好的導熱性,也就是說,水冷散熱器的散熱性能與其中散熱液(水或其他液體)流速成正比,制冷液的流速又與制冷系統水泵功率相關。而且水的熱容量大,這就使得水冷制冷系統有著很好的熱負載能力。相當于風冷系統的5倍,導致的直接好處就是CPU工作溫度曲線非常平緩。使用風冷散熱器的系統在運行CPU負載較大的程序時會在短時間內出現溫度熱尖峰,或有可能超出CPU警戒溫度,而水冷散熱系統則由于熱容量大,熱波動相對要小得多。
3.2 熱管散熱器
  熱管散熱器它包括帶有對流口的散熱殼體,在散熱殼體內置的上、下支承板中置入若干個真空超導管,在超導管內裝有熱工介質,超導管的下端插入熱媒盒內,熱媒盒上設有與熱源連通的進、出水口,在超導管下部和熱媒盒外壁上設有保溫層,當熱源停止供熱時,通過保溫層的蓄熱釋放來維持熱傳導的,具有熱源間歇供熱就能滿足室內取暖的需要,節約能源,供熱成本低等優點。
3.3 風扇散熱器
  風冷散熱器風扇每分鐘送出或吸入的空氣總體積,如果按立方英尺來計算,單位就是CFM;如果按立方米來算,就是CMM,散熱器產品經常使用的風量單位是CFM。 在散熱片材質相同的情況下,風量是衡量風冷散熱器散熱能力的最重要的指標。顯然,風量越大的散熱器其散熱能力也越高。這是因為空氣的熱容是一定的,更大的風量,也就是單位時間內更多的空氣能帶走更多的熱量。當然,同樣風量的情況下散熱效果和風的流動方式有關。
3.4 FUL型散熱器
  FUL型散熱器是—種新型的換熱裝置,它采用了具有優良技術性能的鋼鋁復合翅片管和用以補償熱應力的浮頭式結構,它是以導熱油(也稱有機熱載體或熱煤體)為傳熱介質進行空氣加熱換熱裝置的最佳選擇。散熱器在紡織、印染、橡膠、制革、木材加工、涂裝烤漆等行業中已得到廣泛應用,均取得滿意的效果。浮頭式結構保證了散熱器在溫差較高的工作環境中及設備外始運行時的巨大熱應力能得到有效的補償。FUL型散熱器可有不同表面管長、管數及排數組成多種規格,其流程可根據用戶需要制成雙流程、三流程、四流行及多流程,使用部門可根據需要任意選用。
散熱器互動百科
計算機部件中大量使用集成電路。眾所周知,高溫是集成電路的大敵。高溫不但會導致系統運行不穩,使用壽命縮短,甚至有可能使某些部件燒毀。導致高溫的熱量不是來自計算機外,而是計算機內部,或者說是集成電路內部。散熱器的作用就是將這些熱量吸收,然后發散到機箱內或者機箱外,保證計算機部件的溫度正常。多數散熱器通過和發熱部件表面接觸,吸收熱量,再通過各種方法將熱量傳遞到遠處,比如機箱內的空氣中,然后機箱將這些熱空氣傳到機箱外,完成計算機的散熱。
散熱器 - 概述

計算機部件中大量使用集成電路。眾所周知,高溫是集成電路的大敵。高溫不但會導致系統運行不穩,使用壽命縮短,甚至有可能使某些部件燒毀。導致高溫的熱量不是來自計算機外,而是計算機內部,或者說是集成電路內部。散熱器的作用就是將這些熱量吸收,然后發散到機箱內或者機箱外,保證計算機部件的溫度正常。多數散熱器通過和發熱部件表面接觸,吸收熱量,再通過各種方法將熱量傳遞到遠處,比如機箱內的空氣中,然后機箱將這些熱空氣傳到機箱外,完成計算機的散熱。 散熱器的種類非常多,CPU、顯卡、主板芯片組、硬盤、機箱、電源甚至光驅和內存都會需要散熱器,這些不同的散熱器是不能混用的,而其中最常接觸的就是CPU的散熱
計算機散熱器器。依照從散熱器帶走熱量的方式,可以將散熱器分為主動散熱和被動散熱。前者常見的是風冷散熱器,而后者常見的就是散熱片。進一步細分散熱方式,可以分為風冷,熱管,液冷,半導體制冷,壓縮機制冷等等。

散熱器 - 散熱片材質

散熱片材質是指散熱片所使用的具體材料。每種材料其導熱性能是不同的,按導熱性能從高到低排列,分別是銀,銅,鋁,鋼。不過如果用銀來作散熱片會太昂貴,故最好的方案為采用銅質。雖然鋁便宜得多,但顯然導熱性就不如銅好(大約只有銅的百分之五十多點)。
常用的散熱片材質是銅和鋁合金,二者各有其優缺點。銅的導熱性好,但價格較貴,加工難度較高,重量過大(很多純銅散熱器都超過了CPU對重量的限制),熱容量較小,而且容易氧化。而純鋁太軟,不能直接使用,都是使用的鋁合金才能提供足夠的硬度,鋁合金的優點是價格低廉,重量輕,但導熱性比銅就要差很多。有些散熱器就各取所長,在鋁合金散熱器底座上嵌入一片銅板。
對于普通用戶而言,用鋁材散熱片已經足以達到散熱需求了。

散熱器 - 散熱方式

散熱方式是指該散熱器散發熱量的主要方式。在熱力學中,散熱就是熱量傳遞,而熱量的傳遞方式主要有三種:熱傳導,熱對流和熱輻射。物質本身或當物質與物質接觸時,能量的傳遞就被稱為熱傳導,這是最普遍的一種熱傳遞方式。比如,CPU散熱片底座與CPU直接接觸帶走熱量的方式就屬于熱傳導。熱對流指的是流動的流體(氣體或液體)將熱帶走的熱傳遞方式,在電腦機箱的散熱系統中比較常見的是散熱風扇帶動氣體流動的“強制熱對流”散熱方式。熱輻射指的是依靠射線輻射傳遞熱量,日常最常見的就是太陽輻射。這三種散熱方式都不是孤立的,在日常的熱量傳遞中,這三種散熱方式都是同時發生,共同起作用的。
實際上,任何類型的散熱器基本上都會同時使用以上三種熱傳遞方式,只是側重點不同罷了。比如普通的CPU散熱器,CPU散熱片與CPU表面直接接觸,CPU表面的熱量通過熱傳導傳遞給CPU散熱片;散熱風扇產生氣流通過熱對流將CPU散熱片表面的熱量帶走;而機箱內空氣的流動也是通過熱對流將
CPU 散熱片周圍空氣的熱量帶走,直到機箱外;同時所有溫度高的部分會對周圍溫度低的部分發生熱輻射。
散熱器的散熱效率與散熱器材料的熱傳導率、散熱器材料和散熱介質的熱容以及散熱器的有效散熱面積等參數有關。
依照從散熱器帶走熱量的方式,可以將散熱器分為主動散熱和被動散熱,前者常見的是風冷散熱器,而后者常見的就是散熱片。進一步細分散熱方式,可以分為風冷、熱管、液冷、半導體制冷和壓縮機制冷等等。
風冷散熱是最常見的,而且非常簡單,就是使用風扇帶走散熱器所吸收的熱量。具有價格相對較低、安裝簡單等優點,但對環境依賴比較高,例如氣溫升高以及超頻時其散熱性能就會大受影響。
熱管是一種具有極高導熱性能的傳熱元件,它通過在全封閉真空管內的液體的蒸發與凝結來傳遞熱量,它利用毛吸作用等流體原理,起到類似冰箱壓縮機制冷的效果。具有極高的導熱性、良好的等溫性、冷熱兩側的傳熱面積可任意改變、可遠距離傳熱、可控制溫度等一系列優點,并且由熱管組成的換熱器具有傳熱效率高、結構緊湊、流體阻損小等優點。由于其特殊的傳熱特性,因而可控制管壁溫度,避免露點腐蝕。
液冷則是使用液體在泵的帶動下強制循環帶走散熱器的熱量,與風冷相比具有安靜、降溫穩定、對環境依賴小等優點。但熱管和液冷的價格相對較高,而且安裝也相對麻煩一些。
在選購散熱器時,可以根據自己的實際需求以及經濟條件來選購,原則是夠用就好。

散熱器 - 環境熱交換

當熱量傳到散熱器的頂部后,就需要盡快地將傳來的熱量散發到周邊環境中去,對風冷散熱器而言就是要與周圍的空氣進行熱交換。這時,熱量是在兩種不同介質間傳遞,所依循的公式為Q=α
X A X
ΔT,其中ΔT為兩種介質間的溫差,即散熱器與周圍環境空氣的溫度差;而α為流體的導熱系數,在散熱片材質和空氣成分確定后,它就是一個固定值;其中最重要的A是散熱片和空氣的接觸面積,在其他條件不變的前提下,如散熱器的體積一般都會有所限制,機箱內的空間有限,過大會加大安裝的難度,而通過改變散熱器的形狀,增大其與空氣的接觸面積,增加熱交換面積,是提高散熱效率的有效手段。要實現這一點,一般通過用鰭片式設計輔以表面粗糙化或螺紋等辦法來增大表面積。
純鋁散熱器
純鋁散熱器是早期最為常見的散熱器,其制造工藝簡單,成本低,到目前為止,純鋁散熱器仍然占據著相當一部分市場。為增加其鰭片的散熱面積,純鋁散熱器最常用的加工手段是鋁擠壓技術,而評價一款純鋁散熱器的主要指標是散熱器底座的厚度和Pin-Fin比。Pin是指散熱片的鰭片的高度,Fin是指相鄰的兩枚鰭片之間的距離。Pin-Fin比是用Pin的高度(不含底座厚度)除以Fin,Pin-Fin
比越大意味著散熱器的有效散熱面積越大,代表鋁擠壓技術越先進。
純鋁散熱器
陶瓷散熱器(又稱陶瓷換熱器)
其生產工藝與窯具的生產工藝基本相同,導熱性與抗氧化性能是材料的主要應用性能。它的原理是把陶瓷散熱器放置在離煙道出口較近、溫度較高的地方,不需要摻冷風及高溫保護,當窯爐溫度為1250-1450℃時,煙道出口的溫度應是1000-1300℃,陶瓷換熱器回收余熱可達到450-750℃,將回收到的的熱空氣送進窯爐與燃氣形成混合氣進行燃燒,這樣可以降低生產成本,增加經濟效益。

  陶瓷散熱器陶瓷換熱器在金屬換熱器的使用局限下得到了很好的發展,因為它較好地解決了耐腐蝕、耐高溫等課題,成為了回收高溫余熱的最佳換熱器。經過多年生產實踐,結果表明陶瓷換熱器效果很好。它的主要優點是:導熱性能好,高溫強度高,抗氧化、抗熱震性能好,壽命長,維修量小,性能可靠穩定,操作簡便。是目前回收高溫煙氣余熱的最佳裝置。
純銅散熱器
銅的熱傳導系數是鋁的1.69倍,所以在其他條件相同的前提下,純銅散熱器能夠更快地將熱量從熱源中帶走。不過銅的質地是個問題,很多標榜“純銅散熱器”其實并非是真正的100%的銅。在銅的列表中,含銅量超過99%的被稱為無酸素銅,下一個檔次的銅為含銅量為85%以下的丹銅。目前針對13年市場上大多數的純銅散熱器的含銅量都介于兩者之間。而一些劣質純銅散熱器的含銅量甚至連85%都不到,雖然成本很低,但其熱傳導能力大大降低,影響了散熱性。此外,銅也有明[1]顯的缺點,成本高,加工難,散熱器質量太大都阻礙了全銅散熱片的應用;紅銅的硬度不如鋁合金AL6063,某些機械加工(如剖溝等)性能不如鋁;銅的熔點比鋁高很多,不利于擠壓成形(
Extrusion )等問題。
銅鋁結合技術
在考慮了銅和鋁這兩種材質各自的缺點后,目前市場部分高端散熱器往往采用銅鋁結合制造工藝,這些散熱片通常都采用銅金屬底座,而散熱鰭片則采用鋁合金。當然,除了銅底,也有散熱片使用銅柱等方法,也是相同的原理。憑借較高的導熱系數,銅制底面可以快速吸收CPU釋放的熱量;鋁制鰭片可以借助復雜的工藝手段制成最有利于散熱的形狀,并提供較大的儲熱空間并快速釋放,這在各方面找到了的一個均衡點。
銅鋁結合
熱量從CPU核心散發到散熱片表面,是一個熱傳導過程。對于散熱片的底座而言,由于直接與高熱量的小面積熱源接觸,這就要求底座能夠迅速將熱量傳導開來。散熱片選用較高熱傳導系數的材料對提高熱傳導效率很有幫助。通過熱傳導系統對照表可以看出,如鋁的熱傳導系數237W/mK,銅的熱傳導系數則為401W/mK,而比較同樣體積的散熱器,銅的重量是鋁的3倍,而鋁的比熱僅為銅的2.3倍,所以相同體積下,銅質散熱器可以比鋁質散熱器容納更多的熱量,升溫更慢。同樣厚度的散熱器底座,銅不但可以快速引走熱源如CPU
Die的溫度,自己的溫度上升也比鋁的散熱片緩慢。因此銅更適合做成散熱器的底面。
不過,這兩種金屬的結合比較困難,銅和鋁之間的親和力較差,如果接合處理不好,便會產生較大的介面熱阻(即兩種金屬之間由于不充分接觸而產生的熱阻)。在實際設計和制造中,廠商總是盡可能降低介面熱阻,揚長避短,這往往也體現了廠商的設計能力與制造工藝。
常見的銅鋁結合工藝包括:
扦焊
扦焊是采用熔點比母材熔點低的金屬材料作為焊料,在低于母材熔點而高于焊料熔點的溫度下,利用液態焊料潤濕母材,填充接頭間隙,然后冷凝形成牢固接合界面的焊接方法。主要工序有:材料前處理、組裝、加熱焊接、冷卻、后處理等。常用的扦焊方式是錫扦焊,鋁表面在空氣中會形成一層非常穩定的氧化層(AL2O3),使銅鋁焊接難度較高,這是阻礙焊接的最大因素。必須要將其去除或采用化學方法將其去除后并電鍍一層鎳或其它容易焊接的金屬,這樣銅鋁才能順利焊接在一起。
散熱片上的銅底是進行熱的傳導,要求的不僅是機械強度,更重要的是焊接的面積要大(焊著率要高),才能有效地提升散熱效能,否則不但不會提升散熱效能,反而會使其比全鋁合金的散熱片更加糟糕。
貼片、螺絲鎖合
貼片工藝是將薄銅片通過螺絲與鋁制底面結合,這樣做的主要目的是增加散熱器的瞬間吸熱能力,延長一部分本身設計成熟的純鋁散熱器的生命周期。經過測試發現:在鋁散熱片底部與銅塊之間使用高性能導熱介質,施加80Kgf的力壓緊后用螺絲將其鎖緊,其散熱效果與銅鋁焊接的效果相當,同樣達到了預計的散熱效能提升幅度。
這種方法較焊接簡單,,而且品質穩定,制程簡單,投入設備成本較焊接低,不過只是作為改進,所以性能提升不明顯。雖然有散熱膏填充,銅片與鋁底之間的不完全接觸仍然是熱量傳遞的最大障礙。
制造的主要工序有:銅片裁切、校平(平面度小于0.1mm、鉆孔、涂抹導熱介質鉆孔、攻牙、清洗、強力預壓程序、兩段式鎖合作業、定扭力鎖螺絲。
貼片工藝的重點在于控制好銅、鋁平面度和粗糙度以及鎖螺絲的扭力等因素,即可得到一定的效能提升,是一種不錯的銅鋁結合方式。如果使用的導熱介質性能低劣,或是銅塊平整度不良,熱量就不能順利地傳導至鋁的散熱片表面,使散熱效果大打折扣。另外,螺絲的鎖合力和銅材的純度不夠,都是不良的影響因素。
塞銅 嵌銅
塞銅主要有兩種方式,一種是將銅片嵌入鋁制底板中,常見于用鋁擠壓工藝制造的散熱器中。由于鋁制散熱器底部的厚度有限,嵌入銅片的體積也受到限制。增加銅片的主要目的是加強散熱器的瞬間吸熱能力,而且與鋁制散熱器的接觸也很有限,所以大多數情況下,這種銅鋁散熱器比鋁制散熱器的效果好不了多少,在接觸不良的情況下,甚至會妨礙散熱。還有一種是將銅柱嵌入鰭片呈放射狀的鋁制散熱器中。Intel原裝散熱器就是采用了這樣的設計。銅柱的體積較大,與散熱器的接觸較為充分。采用銅柱后,散熱器的熱容量和瞬間吸熱能力都能增強。這種設計也是目前OEM采用較多的。
比較少見的三角底座
塞銅工藝在制造中一般通過如下方式實現:
機械式壓合
機械式壓合方式是將一塊直徑尺寸大于鋁孔徑的銅塊,通過機械的方式,將其壓合在一起,因為鋁有延展性,所以銅可以在常溫下與鋁質散熱片結合,這種方式的結合的效果也是比較可觀,但有一個致命的缺點就是銅在被擠壓進入鋁孔的過程中,鋁孔內表面容易被銅刮傷,嚴重影響熱的傳導。這要通過合理搭配過盈量以及優化設計銅塊的形狀來避免此類問題的產生。
熱脹冷縮結合
在鋁的散熱片底部加工一個直徑ψ=D1的圓孔,另外做一個直徑ψ=D1+0.1MM
的銅柱,利用金屬材料的熱脹冷縮特點,將鋁質散熱片加熱至400℃,其受熱膨脹圓孔直徑擴張至D1+0.2MM以上。利用專門機器在高溫下將常溫(或冷卻后的)銅柱快速塞入鋁質散熱片之圓孔內,待其冷卻收縮后,銅柱與鋁質散熱片就能緊密結合為一體。這也是一種可靠的方法,其銅鋁穩定性很高,由于沒有使用第三方介質,結合緊密度最佳。塞銅工藝可以大幅度降低接觸面間的熱阻,不但保證了銅鋁結合的緊密程度,更充分利用了兩種金屬材料的散熱特性。
但要注意銅柱和圓孔的直徑尺寸及表面粗糙度的品質控制,這些會對其散熱效果有一定的影響。
在經過塞銅工藝處理后,散熱器底面往往還要經過“銑”和“磨”處理。銑工藝針對塞銅處理中的銅芯,磨工藝則針對整個散熱片底部進行磨平處理。
鍛造工藝(冷鍛)
鍛造工藝主要由ALPHA公司掌握,其是在金屬的特殊物理狀態(降伏狀態)下用高壓將其壓入鍛造模具,并在模具上預置銅塊,塞入降伏態的鋁中。由于降伏態時鋁的特殊性質(非液態,柔軟,易于加工),銅和鋁可以完美的結合,達到中間無空隙,介面熱阻很小。鍛造工藝難度大,成本高,所以成品價格高昂,屬于非主流產品。采用這種工藝的散熱片一般都帶有許多密密麻麻的針狀鰭片。這種工藝制造的散熱片樣式豐富,設計的想象空間較大,但成本也相對較高。
插齒(Crimped Fin)
插齒工藝大膽改進傳統的銅鋁結合技術。先將銅板刨出細槽,然后插入鋁片,利用60噸以上的壓力,把鋁片結合在銅片的基座中,并且鋁和銅之間沒有使用任何介質,從微觀上看鋁和銅的原子在某種程度上相互連接,從而徹底避免了傳統的銅鋁結合產生介面熱阻的弊端,大大提高了產品的熱傳導能力,并且可以生產銅片插鋁座,銅片插銅座等各種工藝產品,來滿足不同的散熱需求。這種技術明顯延長了一部分銅鋁結合技術的壽命。
除了上面介紹的外,還有一些銅鋁結合的方法,但工藝主要都是得保證銅與鋁的熱接觸面的結合品質,否則其散熱效果還不如全鋁合金散熱片。新的制程是需要不斷驗證,不斷改進,最終才會達到預期的效果,在選用銅鋁結合的散熱器時切不可只看外觀,只有實際對比才能買到一個品質優良的銅鋁結合散熱器
散熱器的加工成型技術
從某些角度看,散熱器的加工成型技術決定了散熱器的最終性能,也是廠商技術實力的最重要體現。目前散熱器的主流成型技術多為如下幾類:
鋁擠壓技術(Extruded)
鋁擠壓技術簡單的說就是將鋁錠高溫加熱至約
520~540℃,在高壓下讓鋁液流經具有溝槽的擠型模具,作出散熱片初胚,然后再對散熱片初胚進行裁剪、剖溝等處理后就做成了我們常見到的散熱片。鋁擠壓技術較易實現,且設備成本相對較低,也使其在前些年的低端市場得到了廣泛的應用。一般常用的鋁擠型材料AA6063,其具有良好的熱傳導率(約160~180
W/m.K)與加工性。不過由于受到本身材質的限制,散熱鰭片的厚度和長度之比不能超過1:18,所以在有限的空間內很難增大散熱面積,故鋁擠散熱片的散熱效果比較差,很難勝任現今日益攀升的高頻率CPU。
鋁壓鑄技術
除鋁擠壓技術外,另一個常被用來制造散熱片的制程方式為鋁壓鑄,通過將鋁錠熔解成液態后,填充入金屬模型內,利用壓鑄機直接壓鑄成型,制成散熱片,采用壓注法可以將鰭片做成多種立體形狀,散熱片可依需求做成復雜形狀,亦可配合風扇及氣流方向做出具有導流效果的散熱片,且能做出薄且密的鰭片來增加散熱面積,因工藝簡單而被廣泛采用。一般常用的壓鑄型鋁合金為ADC12,由于壓鑄成型性良好,適用于做薄鑄件,但因熱傳導率較差(約
96 W/m.K),現在國內多以AA1070 鋁料來做為壓鑄材料,其熱傳導率高達 200 W/m.K 左右,具有良好的散熱效果。
不過,AA1070 鋁合金壓鑄散熱器存在著一些其自身無法克服的先天不足:
(1)壓鑄時表面流紋及氧化渣過多,會降低熱傳效果。
(2)冷卻時內部微縮孔偏高,實質熱傳導率降低(K<200 W/m.K)。
(3)模具易受侵蝕,致壽命較短。
(4)成型性差,不適合薄鑄件。
(5)材質較軟,容易變型。
隨著CPU主頻的不斷提升,為了達到較好的散熱效果,采用壓鑄工藝生產的鋁質散熱器體積不斷加大,給散熱器的安裝帶來了很多問題,并且這種工藝制作的散熱片有效散熱面積有限,要想達到更好的散熱效果勢必提高風扇的風量,而提高風扇風量又會產生更大的噪音。
散熱器的加工成型技術
接合型制程
這類散熱器是先用鋁或銅板做成鰭片,之后利用導熱膏或焊錫將它結合在具有溝槽的散熱底座上。結合型散熱器的特點是鰭片突破原有的比例限制,散熱效果好,而且還可以選用不同的材質做鰭片。此制程之優點為散熱器Pin-Fin比可高達60以上,散熱效果佳,且鰭片可選用不同材質制作。
其缺點在于利用導熱膏和焊錫接結合的鰭片與底座之間會存在介面阻抗問題,從而影響散熱,為了改善這些缺點,散熱器領域又運用了2種新技術。
首先是插齒技術,它是利用60噸以上的壓力,把鋁片結合在銅片的基座中,并且兩者之間沒有使用任何介質,從微觀上看這兩者的原子在某種程度上相互連接,從而徹底避免了傳統的兩者結合產生介面熱阻的弊端,大大提高了產品的熱傳到能力。
其次是回流焊接技術,傳統的接合型散熱片最大的問題是介面阻抗問題,而回流焊接技術就是對這一問題的改進。其實,回流焊接和傳統接合型散熱片的工序幾乎相同,只是使用了一個特殊的回焊爐,它可以精確的對焊接的溫度和時間參數進行設定,焊料采用用鉛錫合金,使焊接和被焊接的金屬得到充分接觸,從而避免了漏焊空焊,確保了鰭片和底座的連接盡可能緊密,最大限度地降低介面熱阻,又可以控制每一個焊點的焊銅融化時間和融化溫度,保證所有焊點的均勻,不過這個特殊的回焊爐價格很貴,主板廠商用的比較多,而散熱器廠商則很少采用。一般說來,采取這種工藝的散熱器多用于高端,價格較為昂貴。
可撓性制程
可撓性制程先將銅或鋁的薄板以成型機折成一體成型的鰭片,然后用穿刺模將上下底板固定,再利用高周波金屬熔接機,與加工過的底座焊接成一體,由于制程為連續接合,適合做高厚長比的散熱片,且因鰭片為一體成型,利于熱傳導的連續性,鰭片厚度僅有0.1mm,可大大降低材料的需求,并在散熱片容許的重量內得到最大的熱傳面積。為達到大量生產,并克服材質接合時的接口阻抗,制程部份采上下底板同時送料、自動化一貫制程、上下底板接合采用高周波熔焊接合,即材料熔合來防止接口阻抗的產生,以建立高強度、緊密排列間距的散熱片。由于制程連續,故能大量生產,且由于重量大幅減輕,效能提升,所以能增加熱傳效率。
鍛造制程
鍛造工藝就是將鋁塊加熱后將鋁塊加熱至降伏點,利用高壓充滿模具內而形成的,它的優點是鰭片高度可以達到50mm以上,厚度1mm以下,能夠在相同的體積內得到最大的散熱面積,而且鍛造容易得到很好的尺寸精度和表面光潔度。但鍛造時,由于冷卻塑性流變時會有頸縮現象,使散熱片易有厚薄、高度不均的情況產生,進而影響散熱效率,因金屬的塑性低,變形時易產生開裂,變形抗力大,需要大噸位(500噸以上)的鍛壓機械,也正因為設備和模具的高昂費用而導致產品成本極高。且因設備及模具費用高昂,除非大量生產否則成本過高。
全世界目前有能力制造出冷鍛散熱片的廠商并不多,最為有名的就是日本的ALPHA,而臺灣就是Taisol,MALICO-太業科技。冷鍛的優點是可以在制造出散熱面積比鋁擠還大的散熱片,且因鋁擠制造過程是拉伸,所以鋁金屬組織是承水平方向擴大,而冷緞方向是垂直壓縮的,因此對于散熱上,冷鍛占較大的優勢,缺點是成本高,有技術可制造生產的廠商亦不多。
散熱器維基百科
散熱器
有些設備工作時會產生大量的熱量,而這些多余的熱量不能有快速散去并聚積起來產生高溫,很可能會毀壞正在工作的設備,這時散熱器便能有效地解決這個問題。散熱器是附在發熱設備上的一層良好導熱介質,扮演猶如中間人一樣的角色,有時在導熱介質的基礎上還會加上風扇等等東西來加快散熱效果。但有時散熱器也扮演強盜的角色,如冰箱的散熱器是強制抽走熱量,來達到比室溫更低的溫度。
工作原理
散熱器的工作原理是熱量從發熱設備產生傳至散熱器再傳到空氣等物質,其中熱量通過熱力學中的熱量傳遞進行傳遞。而熱量的傳遞方式主要有熱傳導、熱對流和熱輻射,如當物質與物質接觸時只要存在溫差,就會發生熱量傳遞,直到各處溫度相同為止。散熱器正是利用這一點,如采用良好的導熱材料,薄而大塊的鰭片狀結構增大由發熱設備與散熱器到空氣等物質的接觸的面積與導熱速度。
分類[編輯]
風冷,散熱是最常見的,而且非常簡單,就是使用風扇帶走散熱器所吸收的熱量。價格相對較低,而且安裝簡單,但對環境依賴比較高,例如氣溫升高散熱性能就會大受影響。
熱管,是一種具有極高導熱性能的傳熱元件,它通過在全封閉真空管內的液體的蒸發與凝結來傳遞熱量,它利用毛吸作用等流體原理,起到類似冰箱壓縮機制冷的效果。具有很高的導熱性、優良的等溫性、熱流密度可變性、熱流方向酌可逆性、可遠距離傳熱、恒溫特性(可控熱管)、熱二極管與熱開關性能等一系列優點,并且由熱管組成的換熱器具有傳熱效率高、結構緊湊、流體阻損小等優點。由于其特殊的傳熱特性,因而可控制管壁溫度,避免露點腐蝕。但價格相對較高。
液冷,則是使用液體在泵的帶動下強制循環帶走散熱器的熱量,與風冷相比具有安靜、降溫穩定、對環境依賴小等等優點。但液冷的價格也相對較高,安裝也相對麻煩一些。
半導體制冷利用一塊N型半導體材料和一塊P型半導體材料聯結成電偶對時,在這個電路中接通直流電流后,就能產生能量的轉移,電流由N型元件流向P型元件的接頭吸收熱量,成為冷端由P型元件流向N型元件的接頭釋放熱量,成為熱端,從而產生導熱作用。
壓縮機制冷從吸氣管吸入低溫低壓的制冷劑氣體,通過壓縮機對其進行壓縮后,向排氣管排出高溫高壓的制冷劑氣體,為制冷循環提供動力,從而實現壓縮→冷凝→膨脹→蒸發 ( 吸熱 ) 的制冷循環。如空調、冰箱。
當然,以上大多數散熱類型最后都離不開風冷的。

 

吉林快3三不同中奖率